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Abstract. In this paper, monitoring and sensor fault detection in a waste-water treatment process
are discussed. Monitoring is based on the Takagi-Sugeno fuzzy model of a plant process obtained by
using Gustafson-Kessel fuzzy clustering algorithm.The paper also explains the principle of the
Takagi-Sugeno fuzzy model. The main idea is to cope with the non-linearity of a monitored process.
The output of the fuzzy-model in normal operation regime is compared with the current behavior. If
the fault-detection index exceeds a certain predefined value (the fault-tolerant index), an alarm is
triggered. The data treated in this paper are obtained with a simulation model of a waste-water
treatment plant and by simulating sensor faults. The signals to be measured in the process
monitoring are the following: influent ammonia concentration, dissolved-oxygen concentration in the
first aerobic reactor tank, temperature, dissolved-oxygen concentration and ammonia concentration in
the second aerobic reactor.
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1 Introduction

Recently, fault detection and management became
a very popular area in the process industry. Fault-
detection methods are mainly based either on a pro-
cess model, expert system, statistical signal process-
ing [3, 4] or on pattern recognition techniques [1, 2].
The today’s fast and cheep sensors allow us to mea-
sure a vast amount of process variables on-line. By
processing these signals, process monitoring can be
used to evaluate the current performance of the pro-
cess and to detect its early faults.

In this paper, sensor fault detection in a waste wa-
ter treatment process (WWT) [5, 6, 7] is discussed.
WWT processes are of a nonlinear nature with time-
varying dynamics and relations changing on a daily,
monthly and seasonal basis. They are affected by the
outside air temperature, amount of rain and vary-
ing loads. Therefore, theoretical modelling of a pro-
cess is a complex and difficult task potentially lead-
ing to questionable results. In this paper we propose
fault detection method based on a fuzzy model. The
fuzzy model is able to approximate a nonlinear sys-
tem more accurately than a linear model, thus re-
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ducing the number of false alarms. To identify the
number of clusters the, Gustafson-Kessel clustering
algorithm was used and to identify the model pa-
rameters the least-square algorithm was used. After
being identified on a set of training data, the model
was used to monitor a WWT and to detect a simu-
lated fault on a sensor.

1.1 Fuzzy model and Gustafson-Kessel
clustering

In this section the methods used in data analyzing
are explained. First the Gustafson-Kessel (GK) clus-
tering algorithm is explained then the Takagi-Sugeno
(TS) fuzzy model is derived and identified.

1.1.1 Gustafson-Kessel clustering algorithm

The GK clustering algorithm is used to identify clus-
ters of different shapes. This is convenient for a
WWT process with this kind of shapes present. The
input data matrix is given as:

X ∈ Rn×p. (1)

The input vector is defined as:

xk = [xk1, . . . , xkp] , xk ∈ Rp. (2)
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The set of n measurements is denoted as:

X = {xk | k = 1, 2, . . . , n} (3)

and can be presented as n× p matrix:

X =




x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

...
...

xn1 xn2 . . . xnp




. (4)

The main objective of clustering is to partition a
set of data X into c partitions called clusters. The
fuzzily partitioned set of data X is combined of fuzzy
subsets (clusters) {Ai | 1 ≤ i ≤ c}. They are defined
with the membership functions implicitly defined in
the fuzzy partition matrix U = [µik] ∈ Rc×n. The
i-th row of the matrix contains the membership de-
gree of the i-th cluster Ai of data set X. The par-
tition matrix satisfies the following conditions: the
membership degrees are real numbers from the in-
terval µik ∈ [0, 1] , 1 ≤ i ≤ c, 1 ≤ k ≤ n, the
total membership degree of sample xk to all clus-
ters is one (

∑c
i=1 µik = 1, 1 ≤ k ≤ n), none of

the clusters is neither empty nor containing all data
(0 <

∑n
k=1 µik < n, 1 ≤ i ≤ c). This means that the

fuzzy partition matrix belongs to a fuzzy partition
set defined as:

M = {U ∈ Rc×n | µik ∈ [0, 1] ,∀i, k;
c∑

i=1

µik = 1,∀k; 0 <

n∑

k=1

µik < n, ∀i}. (5)

The fuzzy partition matrix is obtained by apply-
ing the clustering method on a data-set matrix. The
clustering algorithm is obtained by minimizing the
fuzzy c-means criterion function using the constraint
from Eq. 5:

J(X, U, V, λ) =
c∑

i=1

n∑

k=1

µm
ikd2

ik + λ

c∑

i=1

n∑

k=1

(µik − 1) ,

(6)
where U is the fuzzy partition matrix of data matrix
X, V is the vector of cluster centres

V = [v1, v2, . . . , vc] , vi ∈ Rp, (7)

d2
ik is the distance norm

d2
ik = (xk − vi)

T
Ai (xk − vi) .

Matrix Ai is defined as:

Ai = (ρidet (Ci))
1/p

C−1
i ,

where ρi = 1, i = 1, ..., c and p is equal to the number
of the measured variables and Ci is the fuzzy covari-
ance matrix of the i-th cluster:

Ci =
∑n

k=1 µm
ik (xk − vi) (xk − vi)

T

∑n
k=1 µm

ik

.

This allows us to detect hiper-ellipsoidal clusters
in the data distribution. If the data are distributed
along nonlinear hyper-surface, the algorithm will find
the clusters that are local linear approximations of
this hyper-space. Overlapping of clusters is defined
with fuzziness factor m ∈ [1,∞).

The number of clusters is defined by using cluster
validity functions or iterative insertion and merging
clusters depending on the model error. Factor m ef-
fects fuzziness of the cluster: from crisp m = 1 to
completely fuzzy m →∞. In our example, the stan-
dard value m = 2 was used.

1.1.2 Steps of Gustafson-Kessel clustering
algorithm

The GK clustering algorithm can be described with
the following steps:

• Initialization Set the number of clusters c, de-
fine the overlapping/fuzziness factor m (usually
m = 2) and stopping error εend > 0 (in our case
εend = 0.001). Random initialization of fuzzy
partition matrix U ∈ M . Epoch r = 0.

• Loop
r = r + 1

computation of the cluster center posi-
tions:

v
(r)
i =

∑n
k=1

(
µ

(r)
ik

)m

xk

∑n
k=1

(
µ

(r)
ik

)m , 1 ≤ i ≤ c. (8)

computation of fuzzy covariance matrices
and inner-product distance norm Ai:

Ci =
∑n

k=1 µm
ik (xk − vi) (xk − vi)

T

∑n
k=1 µm

ik

, (9)

Ai = (ρidet (Ci))
1/p

C−1
i , 1 ≤ i ≤ c (10)

computation of the distance from the clus-
ter centers

d2
ik =

(
xk − v

(r)
i

)T

Ai

(
xk − v

(r)
i

)
,

1 ≤ i ≤ c, 1 ≤ k ≤ n
(11)

updating of the partition matrix:
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if dik > 0, µ
(r)
ik =

1
∑c

j=1

(
dik

djk

) 2
m−1

(12)

• until ||U (r) − U (r−1)|| < εend

1.1.3 The Takagi-Sugeno fuzzy model

The TS fuzzy model approximates the nonlinear sys-
tem by using smoothly interpolating local linear mod-
els. Each local model contributes to the global model
output depending on the membership degrees of the
current input vector. We assume a set of input vec-
tors:

X = [x1, x2, . . . , xn]T (13)

and a set of outputs

Y = [y1, y2, . . . , yn]T . (14)

A typical fuzzy model is given in the form of rules
Ri:

Ri :
If xk is Ai then ŷk = φi(xk), i = 1, . . . , c

(15)

xk denotes the input vector (variables of premise),
ŷk is the output of a local linear model at time in-
stant k. Input vector xk belongs to each fuzzy sub-
set (A1, . . . , Ac) with a current membership degree
µAi(xk) or µik : R → [0, 1]. Functions φi(·) are ar-
bitrary smooth functions, although linear or affine
functions are normally used. The global model out-
put is calculated as:

ŷk =
∑c

i=1 µikφi(xk)∑c
i=1 µik

. (16)

To simplify Eq. (16), partitioning the unity is con-
sidered, where the function of βi(xk) (Eq. (17)) gives
information of fulfilment of the respective fuzzy rule
in a normalized form.

βi(xk) =
µik∑c
i=1 µik

, i = 1, . . . , c (17)

The sum of this fulfilment over the clusters is one
(
∑c

i=1 βi(xk) = 1) irrespective of xk, as long as the
denominator of βi(xk) is not zero. This can be easily
achieved by properly defining membership functions.
Combining Eqs. (16) and (17), the following equation
can be derived:

ŷk =
c∑

i=1

βi(xk)φi(xk), k = 1, . . . , n (18)

The local-model output is usually defined as a linear
combination of the input vector:

φi(xk) = xkθi, i = 1, . . . , c,

θT
i =

[
θi1, . . . , θi(p+q)

]
. (19)

The vector of fuzzified input variables at time instant
k is defined as:

ψk = [β1(xk)xk, . . . , βc(xk)xk] , k = 1, . . . , n, (20)

the fuzzified data matrix is then written as:

ΨT =
[
ψT

1 , ψT
2 , . . . , ψT

n

]
. (21)

The matrix of the whole set of rules can be written
as:

ΘT =
[
θT
1 , ..., θT

c

]
, (22)

The global-model output (Eq. (18)) can then be writ-
ten in a matrix form:

ŷk = ψkΘ. (23)

The relation of the input vectors and outputs can be
written in a compact form:

Ŷ = ΨΘ, (24)

where Ŷ stands for the vector of model outputs ŷk

(k = 1, . . . , n)

Ŷ = [ŷ1, ŷ2, . . . , ŷn]T . (25)

The TS fuzzy model given with equation (23) is
also called the affine TS model. The model is able
to approximate an arbitrary nonlinear function with
the desired degree of accuracy [8, 9, 10]. The gener-
ality can be proven with the Stone-Weierstrass theo-
rem [11], suggesting that any continuous function can
be approximated by a fuzzy basis function expansion
[12].

1.1.4 Estimation of local linear parameters

To estimate local linear model parameters, the least-
square method is used. Measurements satisfy the
nonlinear equation of the system:

yi = g(xi), i = 1, . . . , n (26)

According to the Stone-Weierstrassevm theorem, for
any given function g on a compact set U c ⊂ Rp, there
exists a fuzzy system f such that:

max
xi∈X

|f(xi)− g(xi)| < δ, ∀i, (27)
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where δ > 0 is an arbitrary small constant. When
a continuous function is approximated with a fuzzy
function from class Fp, defined in Eq. (23), it should
be noted that lower vales of δ imply higher values of
clusters c to satisfy Eq. (27).

The error between the function (process outputs)
and fuzzy approximation (fuzzy-model outputs) can
be defined as:

ei = yi − f(xi) = yi − ŷi, i = 1, ..., n, (28)

where yi stands for the measured output and ŷk for
the fuzzy model output at time instant k. The pa-
rameters of the proposed fuzzy function (Θ) are esti-
mated by minimizing the sum of the squared errors
over the whole input set of data:

E =
n∑

i=1

e2
i =

= (Y − Ŷ )T (Y − Ŷ ) == (Y −ΨΘ)T (Y −ΨΘ).

(29)

Parameter Θ is obtained ∂E
∂Θ = 0:

Θ =
(
ΨT Ψ

)−1
ΨT Y.

2 Biological waste-water treatment
process

The WWT plants are large nonlinear systems sub-
ject to large perturbations. Their dynamics and
nonlinearity depend on outside air temperature,
waste-water inflow and composition and other fac-
tors. A simulation benchmark has been devel-
oped for an unbiased evaluation of different con-
trol schemes. It consists of five sequentially con-
nected reactors along with a 10-layer secondary set-
tling tank. The plant layout, model equations and
control strategy are described in detail on the web
page (http://www.ensic.unancy. fr/costwwtp). In
our approach waste-water is purified in a mechanical
phase and a moving bed bio-film reactor is used. A
schematic presentation of the used simulation bench-
mark is shown in Fig. 1. Signals used to build our

ANOXIC TANKS

AERATION TANKS

Qin

Qair

Qw

Qout

tanki

Figure 1: Schematic presentation of the simulation bench-
mark.

fuzzy model were: influent ammonia concentration

in inflow Qin defined as CNH4Nin , dissolved-oxygen
concentration in the first aerobic reactor tank C1

O2
,

dissolved-oxygen concentration in the second aerobic
reactor tank C2

O2
and ammonia concentration in the

second aerobic reactor tank CNH4Nout . The model
was implemented to approximate the relation be-
tween the ammonia concentration in the second aer-
obic reactor tank and the other measured variables:

CNH4Nout(k) = G (
CNH4Nin

(k), C1
O2

(k), C2
O2

(k)
)
,

(30)
where G stands for nonlinear relation between the
measured variables. The whole set of measurements
is shown in Fig. 2. The sampling time of the pro-
cess was 120 s. The first 15000 samples were used
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Figure 2: Whole set of measurements. The influent
ammonia concentration CNH4Nin , dissolved-oxygen con-
centration in the first aerobic reactor tank C1

O2 , dis-
solved-oxygen concentration in the second aerobic reactor
tank C2

O2 and ammonia concentration in the second aer-
obic reactor tank CNH4Nout .

to identify the model. The output of the identi-
fied fuzzy model (ĈNH4Nout) and the process output
(CNH4Nout) are shown in Fig. 3. The identifica-
tion stage was also used to calculate the threshold for
alarm activation. To detect faults, the fault-detection
index is defined as:

f =

(
CNH4Nout − ĈNH4Nout

ĈNH4Nout

)2

. (31)

The fault-tolerance index is defined as a relative de-
gree of the maximal value of the fault detection in-
dex in the identification phase ftol = γ max f . In
our case, we chose γ = 1.5. Fault tolerance-index
was ftol = 0.15. The fault-detection index is shown
in Fig. 4. The alarm is triggered when the fault-
detection index is higher than the fault-tolerance in-
dex.

The fault was simulated at time sample 17000 on
the CNH4Nout signal. A signal with an exponentially
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Figure 3: Verification of the developed fuzzy model
with fuzzy-model output ĈNH4Nout and process output
CNH4Nout shown.

increasing value was added to the nominal signal in
order to simulate the fault. The slowly increasing
fault was eliminated at time sample 18000. The fault
was detected at time sample 17556. Detection was
a bit delayed, as usually experienced with slowly in-
creasing faults.
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Figure 4: Fault-detection index, fault-tolerance index ftol

and actual and detected fault

3 Conclusion

In this paper, fault detection on a sensor in a WWT
process is discussed. A fault-detection system was re-
alized by using the Takagi-Sugeno fuzzy model. The
model was identified on basis of the Gustafson-Kessel
method for clustering and the least-square method
for local-model parameter identification. The pro-
posed concept was tested on a simulated model of
a WWT process, with a fault simulated on one of
the senors. The measurements used for building our

fuzzy model were: influent ammonia concentration,
dissolved-oxygen concentration in the first aerobic re-
actor tank, temperature, dissolved-oxygen concentra-
tion and ammonia concentration in the second aer-
obic reactor. Fault occurring on the ammonia con-
centration sensor in the second aerobic reactor was
detected with no false alarms and with a small time-
delay because of the nature of the fault.

Since the process dynamics and nonlinearity
change depending on many factors (such as load,
amount of rain, etc.), on-line fuzzy identification
should be adopted. By employing the on-line iden-
tification method the fuzzy model should be able to
adapt to new process dynamics thus increasing the
accuracy of the model estimation.
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